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REDUCING THREE-DIMENSIONAL ELASTICITY PROBLEMS

TO TWO-DIMENSIONAL PROBLEMS BY APPROXIMATING

STRESSES AND DISPLACEMENTS BY LEGENDRE POLYNOMIALS

UDC 539.3Yu. M. Volchkov and L. A. Dergileva

Shell equations are constructed in orthogonal curvilinear coordinates using approximations of stresses
and displacements by Legendre polynomials. The order of the constructed system of differential
equations is independent of whether stresses and displacements or their combination are specified on
the shell surfaces, which provides the correct formulation of the surface conditions in terms of both
displacements and stresses. This allows the system of differential equations of laminated shells to be
constructed using matching conditions for displacements and stresses on the contact surfaces.
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Introduction. Three-dimensional elasticity problems are reduced to two-dimensional problems (shell the-
ory) by using kinematic and force hypotheses [1] or by expanding elastic solutions in terms of a certain complete
system of functions [2–5]. The kinematic and force hypotheses impose rather rigorous constraints on the stress–
strain state; therefore, these hypotheses are usually used to construct shell equations for the case where stresses
are specified on the shell surfaces. Solution of contact problems based on these equations often leads to physically
meaningless results. Expansion of elastic solutions with respect to a certain complete system of functions provides
shell equations in various approximations. In this case, an important question arises: What additional assumptions
should be used to construct a particular approximation, i.e., how many terms should be retained in the expansions
to construct the required approximation? Since Legendre polynomials form a complete system of functions in the
space L2[−1, 1], exactly this system is usually used to construct shell equations.

In the present paper, first-approximation differential equations of laminated elastic shells are constructed
using the approaches set out in [3, 4, 6–8].

1. Three-Dimensional Elasticity Equations in Curvilinear Orthogonal Coordinates. We write
plane elasticity equations for the region ω = {α1, α2, x3: αi ∈ [l−i , l+i ], x3 ∈ [−h/2, h/2], i = 1, 2}.

The equilibrium equations are written as

∂σ̂11

∂α1
+

∂σ̂12

∂α2
+

∂σ̂13

∂x3
+ σ̂21A12 + σ̂31A

′
1 − σ̂22A21 + q1H1H2 = 0 (1 � 2),

∂σ̂31

∂α1
+

∂σ̂32

∂α2
+

∂σ̂33

∂x3
− σ̂11A

′
1 − σ̂22A

′
2 + q3H1H2 = 0,

(1.1)

where

σ̂11 = H2σ11, σ̂12 = H1σ12, σ̂13 = H1H2σ13, σ̂31 = H2σ31,

H1 = A1

(
1 +

x3

R1

)
, A′

1 =
A1

R1
, A12 =

1
A2

∂A1

∂α2
(1 � 2), σ̂33 = H1H2σ33,
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σij are the stresses, qi are the body forces, and A1 and A2 are the Lamé coefficients and R1 and R2 are the radii
of the principal curvatures of the surface x3 = 0. Here and below, the notation 1 � 2 indicates the existence of
equations obtained from the previous equations by replacing the subscript 1 by 2 and 2 by 1.

In the linear theory of elasticity, the strain-tensor components eij are related to the displacement-vector
components U(u1, u2, u3) by the formulas

e11 =
1

H1

( ∂u1

∂α1
+ u2A12 + u3A

′
1

)
,

2e12 =
1

H1

(∂u2

∂α1
− u1A12

)
+

1
H2

( ∂u1

∂α2
− u2A21

)
, (1.2)

2e31 = 2e13 =
1

H1

(∂u3

∂α1
− u1A

′
1

)
+

∂u1

∂x3
(1 � 2), e33 =

∂u3

∂x3
.

The relationship between the stress-tensor and strain-tensor components is given by

σij = aijmnemn, i, j = 1, 2, 3. (1.3)

In relations (1.3), the coefficients aijmn satisfy the conditions

aijmnεijεmn − c εijεij ≥ 0, aijmn = ajimn = aijnm,

where c is a non-negative constant and the summation is performed over the dummy indices from 1 to 3.
The boundary conditions for stresses and displacements are assumed to have the form

[
a±

imui + (1 − a±
im)σ̂im

]
αm=x±

m

= ϕ±
im, m = 1, 2,

[
a±

i3ui + (1 − a±
i3)σ̂i3

]
x3=x±

3

= ϕ±
i3, i = 1, 2, 3,

(1.4)

where a±
i3 are the specified piecewise constant functions of the variables α1 and α2, equal to zero or unity, ϕ±

i3 are
the specified piecewise continuous functions of the variables α1 and α2, and a±

im are constants equal to zero or unity.
We note that for an element whose dimension in the x3-direction is h = x+

3 − x−
3 and whose dimensions in

the α1 and α2 directions are infinitely small, the equilibrium equations can be written as
1∫

−1

(∂σ̂11

∂α1
+

∂σ̂12

∂α2
+

∂σ̂13

∂x3
+ σ̂21A12 + σ̂31A

′
1 − σ̂22A21 + q1H1H2

)
Pk dζ = 0

(1 � 2), k = 0, 1, (1.5)

1∫

−1

(∂σ̂31

∂α1
+

∂σ̂32

∂α2
+

∂σ̂33

∂x3
− σ̂11A

′
1 − σ̂22A

′
2 + q3H1H2

)
dζ = 0,

where Pk(ζ) are Legendre polynomials and ζ = (2/h)(x3 − (x+
3 + x−

3 )/2).
2. Reducing the Three-Dimensional Problem to a Two-Dimensional Problem. To reduce the

three-dimensional elasticity problem to a two-dimensional problem, one replaces Eqs. (1.1) by the system of equa-
tions

1∫

−1

(∂σ̂11

∂α1
+

∂σ̂12

∂α2
+

∂σ̂13

∂x3
+ σ̂21A12 + σ̂31A

′
1 − σ̂22A21 + q1H1H2

)
Pk dζ (1 � 2), k = 0, 1, . . . , N ; (2.1)

1∫

−1

(∂σ̂31

∂α1
+

∂σ̂32

∂α2
+

∂σ̂33

∂x3
− σ̂11A

′
1 − σ̂22A

′
2 + q3H1H2

)
Pk dζ = 0, k = 0, 1, . . . , N − 1. (2.2)
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To construct the shell equations in the Nth approximation, one should approximate the quantities σ̂ij in (2.1) and
(2.2) by Legendre polynomials (for some quantities, two approximations are used) so that all terms in the integrands
are expansions in Legendre polynomials of the same degree:

σ̂′
11 =

k=N∑
k=0

σ̂k
11Pk, σ̂′

12 =
k=N∑
k=0

σ̂k
12Pk, σ̂′

13 =
k=N+1∑

k=0

σ̂k
13Pk,

σ̂′
31 =

k=N∑
k=0

σ̂k
31Pk, σ̂′

33 =
k=N∑
k=0

σ̂k
33Pk, (2.3)

σ̂′′
31 =

k=N−1∑
k=0

σ̂k
31Pk, σ̂′′

11 =
k=N−1∑

k=0

σ̂k
11Pk (1 � 2).

Here

σ̂k
11 =

1
2

(1 + 2k)

1∫

−1

H2σ11Pk dζ, σ̂k
12 =

1
2

(1 + 2k)

1∫

−1

H1σ12Pk dζ,

σ̂k
13 =

1
2

(1 + 2k)

1∫

−1

H1H2σ13Pkdζ, σ̂k
31 =

1
2
(1 + 2k)

1∫

−1

H2σ31Pk dζ, (2.4)

σ̂k
33 =

1
2
(1 + 2k)

1∫

−1

H1H2σ33Pk dζ (1 � 2), k = 0, 1, . . . , N + 1.

In view of (2.3) and (2.4), Eqs. (2.1) and (2.2) become

∂σ̂′
11

∂α1
+

∂σ̂′
12

∂α2
+

∂σ̂′
13

∂x3
+ σ̂′

21A12 + σ̂′
31A

′
1 − σ̂′

22A21 + q̂1 = 0 (1 � 2); (2.5)

∂σ̂′′
31

∂α1
+

∂σ̂′′
32

∂α2
+

∂σ̂′′
33

∂x3
− σ̂′′

11A
′
1 − σ̂′′

22A
′
2 + q̂3 = 0, (2.6)

where

q̂1 =
k=N∑
k=0

q̂k
1Pk (1 � 2), q̂3 =

k=N−1∑
k=0

q̂k
3Pk,

q̂k
i =

1
2

(1 + 2k)

1∫

−1

qiH1H2Pk dζ, i = 1, 2, 3.

The displacement-vector components ui are approximated by Legendre polynomials u′
i in such a manner that

the polynomials σ̂′
11, σ̂′

12, σ̂′
13, σ̂′′

31 (1 � 2), and σ̂′
33 have the same degree as the polynomials ∂u′

1/∂α1, ∂u′
1/∂α2,

∂u′′
1/∂x3, ∂u′

3/∂α1 (1 � 2), and ∂u′′
3/∂x3, respectively. Therefore, the displacements are approximated as follows:

u′
1 =

k=N∑
k=0

uk
1Pk, u′′

1 =
k=N+2∑

k=0

uk
1Pk (1 � 2),

u′
3 =

k=N−1∑
k=0

uk
3Pk, u′′

3 =
k=N+1∑

k=0

uk
3Pk.

(2.7)

Multiplying Eqs. (2.5) by u′
i and Eqs. (2.6) by u′

3, summing the resulting equations, and integrating over
the region ω, we obtain
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∫

ω

(∂σ̂′
γδ

∂αδ
u′

γ +
∂σ̂′

γ3

∂x3
u′

γ + (σ̂′
21A12 + σ̂′

31A
′
1 − σ̂′

22A21)u′
1 + (σ̂′

12A21 + σ̂′
32A

′
2 − σ̂′

11A12)u′
2

+
∂σ̂′

33

∂x3
u′

3 +
∂σ̂′′

3γ

∂αγ
u′

3 − (σ̂′′
11A

′
1 + σ̂′′

22A
′
2)u

′
3 + q̂iu

′
i

)
dω = 0. (2.8)

Since ∂σ̂′
γ3/∂x3 (γ = 1, 2) are expansions in Legendre polynomials of degree up to Nth, the coefficients u′

γ

in the integrand can be replaced by u′′
γ , by virtue of the orthogonality of Legendre polynomials. The quantity

∂σ̂′
33/∂x3 is the expansion in Legendre polynomials of degree up to the N − 1; therefore, the coefficient u′

3 can be
replaced by u′′

3 . In view of the aforesaid, relation (2.8) is written as
∫

ω

(
σ̂′

δγ

∂u′
δ

∂αγ
+ σ̂′′

3γ

∂u′
3

∂αγ
+ σ̂′

i3

∂u′′
i

∂x3
− (σ̂′

21A12 + σ̂′
31A

′
1 − σ̂′

22A21)u′
1

− (σ̂′
12A21 + σ̂′

32A
′
2 − σ̂′

11A12)u′
2 + (σ̂′′

11A
′
1 + σ̂′′

22A
′
2)

)
dω

=
∫

ω

( ∂

∂αδ
(σ̂′

γδu
′
γ + σ̂′′

3δu
′
3) +

∂

∂x3
(σ̂′

i3u
′′
i ) + q̂iu

′
i

)
dω. (2.9)

In the integrand on the left side of equality (2.9), which we denote by E, the expansions σ̂′
ij and σ̂′′

ij can, by
virtue of the orthogonality of Legendre polynomials, be replaced by the expansions

σ̂ij =
k=∞∑
k=0

σk
ijPk(ζ).

Then,

E =
∫

ω

(
σ̂11

(∂u′
1

∂x1
+ A12u

′
2 + A′

1u
′
3

)
+ σ̂22

(∂u′
2

∂x2
+ A21u

′
1 + A′

2u
′
3

)

+ σ̂12

(∂u′
1

∂x2
− A21u

′
2

)
+ σ̂21

(∂u′
2

∂x1
− A12u

′
1

)
+ σ̂13

∂u′′
1

∂x3
+ σ̂31

(∂u′
3

∂x1
− A′

1u
′
1

)

+ σ̂23
∂u′′

2

∂x3
+ σ̂32

(∂u′
3

∂x2
− A′

2u
′
2

)
+ σ̂33

∂u′′
3

∂x3

)
dω.

If the strains eij in (1.2) are approximated as

e11 =
1

H1

(∂u′
1

∂α1
+ u′

2A12 + u′
3A

′
1

)
,

2e12 =
1

H1

(∂u′
2

∂α1
− u′

1A12

)
+

1
H2

( ∂u′
1

∂α2
− u′

2A21

)
, (2.10)

2e31 = 2e13 =
1

H1

(∂u′
3

∂α1
− u′

1A
′
1

)
+

∂u′′
1

∂x3
(1 � 2), e33 =

∂u′′
3

∂x3
,

then

E =
∫

ω

σijeijH1H2 dω. (2.11)

We assume that the stresses σij are related to the strains (2.10) by the equations

σij = aijkseks, i, j, k, s = 1, 2, 3. (2.12)

Since the integrand on the right side of equality (2.9) contains derivatives of the product of the polynomi-
als σ̂′

γδu
′
γ , σ̂′′

3δu
′
3, and σ̂′

i3u
′′
i , boundary conditions (1.4) are replaced by the conditions
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[
a±

γmu′
γ + (1 − a±

γm)σ̂′
γm

]
xm=x±

m

= ϕ̂±
γm,

[
a±
3mu′

3 + (1 − a±
3m)σ̂′′

3m

]
xm=x±

m

= ϕ̂±
3m,

γ = 1, 2, m = 1, 2; (2.13)

[
a±

i3u
′′
i + (1 − a±

i3)σ̂
′
i3

]
x3=x±

3

= ϕ±
i3, i = 1, 2, 3, (2.14)

where

ϕ̂±
γm =

k=N∑
k=0

(ϕ±
γm)kPk, γ = 1, 2, ϕ̂±

3m =
k=N−1∑

k=0

(ϕ±
3m)kPk,

(ϕ±
im)k =

1
2

(1 + 2k)

1∫

−1

ϕ±
imPk dζ, i = 1, 2, 3, m = 1, 2.

For N = 1, conditions (2.13) imply that the vectors of the forces and bending and twisting moments or the
corresponding displacements and rotations are specified on the lateral surfaces.

The two-dimensional problem of the Nth approximation is to find the functions σ′
ij , σ′′

ij , u′
i, and u′′

i that
satisfy Eqs. (2.3)–(2.7) and (2.10)–(2.14).

The functions σ̂′
ij , σ̂′′

ij , u′
i, and u′′

i , whose derivatives with respect to αi enter (2.5), (2.6), and (2.10) will be
called the basic functions and the other functions σ̂k

ij and uk
i the auxiliary functions. Accordingly, the coefficients

of the polynomials Pk(ζ) in the expansions

σ̂′
11, σ̂′

12, σ̂′′
31 (1 � 2), u′

i (i = 1, 2, 3) (2.15)

will be called the basic functions of the variables α1 and α2 (9N + 6 basic functions) and those in the expansions

σ′
31 − σ′′

31, σ̂′
32 − σ̂′′

32, σ̂′
i3, u′′

i − u′
i (i = 1, 2, 3) (2.16)

will be called the auxiliary functions (3N + 13 auxiliary functions).
From (2.3), (2.4), and (2.12), it follows that

1∫

−1

(σ̂′
13 − H1H2a13ijeij)Pk dζ = 0 (1 � 2), k = 0, 1, 2, . . . , N + 1,

1∫

−1

(σ̂′
33 − H1H2a33ijeij)Pk dζ = 0, k = 0, 1, 2, . . . , N, (2.17)

1∫

−1

(σ̂′
31 − H2a31ijeij)PN dζ = 0 (1 � 2).

Equations (2.14) and (2.17) constitute a closed system of equations for the auxiliary functions (2.16). Pro-
vided that

u′
i =

∂u′
i

∂α1
=

∂u′
i

∂α2
= ϕ±

i3 = 0 (i = 1, 2, 3) (2.18)

any solution of this system satisfies the equalities
1∫

−1

∂

∂x3
(σ̂′

i3u
′′
i ) dζ = 0,

1∫

−1

u′′
i

∂σ̂′
i3

∂x3
dζ = 0,

1∫

−1

σ̂′
i3

∂u′′
i

∂x3
dζ =

1∫

−1

aijkseksH1H2 dζ = 0, e11 = e12 = 0, 2e31 = e13 =
∂u′′

i

∂x3
(1 � 2), e13 =

∂u′′
3

∂x3
.
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Thus, if equalities (2.18) are satisfied, the zero solution of system (2.14), (2.17) is unique and this system is
resolvable for the functions (2.16). From the solution of system (2.14), (2.17), the auxiliary functions are expressed in
terms of ϕ±

i3 and the coefficients of the polynomials u′
i, ∂u′

i/∂α1, and ∂u′
i/∂α2 (i = 1, 2, 3). Using these expressions,

the equations of the two-dimensional problem can be formulated only for the basic functions (2.15).
From (2.3), (2.4), and (2.12), we obtain

1∫

−1

(σ̂′
11 − H2a11ijeij)Pk dζ = 0,

1∫

−1

(σ̂′
12 − H1a12ijeij)Pk dζ = 0 (1 � 2), k = 0, 1, 2, . . . , N, (2.19)

1∫

−1

(σ̂′′
31 − H2a31ijeij)Pk dζ = 0 (1 � 2), k = 0, 1, 2, . . . , N − 1.

Expressing the auxiliary functions in Eqs. (2.2), (2.6), and (2.19) in terms of the basic functions, we obtain
a closed system of equations for the basic functions. This system with boundary conditions (2.13) is the boundary-
value problem for 9N + 6 basic functions (2.15). Given these functions, one can determine the auxiliary functions
and, hence, the strains by formulas (2.10) and the stresses by formulas (2.12) at any point of the shell.

3. First-Approximation Equations of an Elastic Layer. To construct two-dimensional equations of
an elastic layer in a first approximation, we require that the following conditions be satisfied.

1. The requirement that the stresses should satisfy the equilibrium equations of an infinitely small element is
relaxed, namely, the stresses should satisfy the equilibrium equations of an element whose dimensions are infinitely
small in the α1 and α2 directions and finite in the x3 direction. Thus, the stresses should satisfy Eqs. (1.5).

2. If the thickness of the layer is small, then, by virtue of the Saint-Venant principle, the conditions at its
lateral surfaces (2.13) can be divided into two groups: the conditions that affect the solution over the entire region
occupied by the layer (we call these the basic conditions) and the conditions that affect the solution only in the
neighborhood of the end faces. In constructing the two-dimensional equations, we require that the boundary-value
problem be resolvable for any type of the basic boundary conditions (2.13) and the order of the system of differential
equations do not depend on whether stresses, displacements or their linear combination are specified on the faces
of the layer.

3. The solution of the two-dimensional equations of the layer should satisfy the energy identity (2.9), which
ensures the uniqueness of a certain class of contact problems [6].

For N = 1, the layer equations based on the representations for stresses (2.3) and displacements (2.7) satisfy
the requirements mentioned above. In the first-approximation equations, the basic functions are the following
quantities used in shell theory: the forces, the moments, and the corresponding average displacements and rotations
of cross sections of the layer.

In the general case of the stress–strain state, the first-approximation system of differential equations of the
elastic layer is a tenth-order system of partial differential equations and solutions of the boundary-value problems
can be obtained only using numerical methods. The coefficients of expansions (2.3) and (2.7) are functions of the
variables α1 and α2. Replacing these functions in the unit square {−1 ≤ α1 ≤ 1, −1 ≤ α2 ≤ 1} by truncated
Legendre polynomials of α1 and α2, one can construct the moment finite element [9]. In [10], an iterative algorithm
for solving plane elasticity problems based on similar finite elements was proposed and the problem of a cracked plate
in tension was solved. A comparison of the numerical and analytical solutions shows that the first-approximation
layer equations can effectively be used to solve problems with singularities in the stress state.

For the one-dimensional stress–strain state, the first-approximation system of equations of the elastic layer is
a sixth-order system of ordinary differential equations (generally, with variable coefficients). For a circular cylindrical
shell and a plane layer, this system becomes a system of differential equations with constant coefficients, for which
a general solution can be constructed. We consider these equations for a cylindrical layer. In this case, one should
set
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R1 = R, A1 = R, H1 = R(1 + x3/R), R2 = ∞, A2 = 1, H2 = 1,

σ̂11 = σ11, σ̂13 = R(1 + x3/R)σ13, σ̂31 = σ31, σ̂33 = Rσ33.

The forces and moments are calculated by the formulas

T11 =

h/2∫

−h/2

σ11 dx3 =
h

2

1∫

−1

σ11 dζ, M11 =

h/2∫

−h/2

σ11x3 dx3 =
h2

4

1∫

−1

σ11ζ dζ,

T31 =

h/2∫

−h/2

σ31 dx3 =
h

2

1∫

−1

σ31 dζ.

In the first approximation, the expansions for the stresses are given by

σ̂11 = σ11 = σ0
11P0 + σ1

11P1, σ̂31 = σ31 = σ0
31P0 + σ1

31P1,

σ̂13 = R
(
σ0

13 +
h

6R
σ1

13

)
P0 + Rσ1

13P1 + Rσ2
13P2.

(3.1)

The forces and moments are expressed in terms of the stress expansion coefficients by the formulas

T11 = hσ0
11, M11 = (h2/6)σ1

11, T31 = hσ0
31.

In this case, the equilibrium equations are written as

∂σ0
11

R ∂ϕ
+

2
h

σ1
31 +

σ0
31

R
+ q0

1 = 0,

∂σ1
11

R ∂ϕ
+

6
h

σ2
13 +

σ1
13

R
+ q1

1 = 0,
∂σ1

13

R ∂ϕ
+

2
h

σ1
33 −

σ0
11

R
+ q0

3 = 0.

(3.2)

We write Hooke’s law relations as

σ11 = α(e11 + γe33), σ33 = α(e33 + γe11), σ13 = 2me13, (3.3)

where α = 2/(1 − γ) and γ = ν/(1 − ν) for plane strain and γ = ν for plane stress. In (3.3), the stresses are
normalized to the shear modulus μ.

The displacements are approximated by the following Legendre polynomial expansions:

u′
1 = u0

1P0 + u1
1P1, u′

3 = u0
3P0,

u′′
1 = u0

1P0 + u1
1P1 + u2

1P2 + u3
1P3, u′′

3 = u0
3P0 + u1

3P1 + u2
3P2.

(3.4)

In accordance with (3.4), the strains are expressed as

e11 = e0
11P0 + e1

11P1, e33 = e0
33P0 + e1

33P1, e13 = e0
13P0 + e1

13P1 + e2
13P2, (3.5)

where

e0
11 =

1
R

(∂u0
1

∂ϕ
+ u0

3

)
, e1

11 =
1
R

∂u1
1

∂ϕ
,

2e0
13 =

1
R

(∂u0
3

∂ϕ
− u0

1 +
2R

h
(u1

1 + u3
1)

)
, 2e1

13 =
1
R

u3
1 +

6
h

u2
1,

2e2
13 =

10
h

u3
1, e0

33 =
2
h

u1
3, e1

33 =
6
h

u2
3.

From (3.1), (3.4), and (3.5), we obtain

σ0
11 = α

[ 1
R

(∂u0
1

∂ϕ
+ u0

3

)
+ γ

2
h

u1
3

]
, σ1

11 = α
( 1

R

∂u1
1

∂ϕ
+ γ

6
h

u2
3

)
,
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σ0
33 = α

[
γ

2
h

u1
3 + γ

1
R

(∂u0
1

∂ϕ
+ u0

3

)]
, σ1

33 = α
( 6

h
u2

3 + γ
1
R

∂u1
1

∂ϕ

)
, (3.6)

σ0
13 = m

1
R

(∂u0
3

∂ϕ
− u0

1 +
2R

h
(u1

1 + u3
1)

)
, σ1

13 = m
(u3

1

R
+

6
h

u2
1

)
, σ2

13 = m
10
h

u3
1.

Ten equations (3.2) and (3.6) and four conditions on the layer faces

α(u0
1 + u1

1 + u2
1 + u3

1) + (1 − α)(σ0
13 + (1 + 1/(6R))σ1

13 + σ2
13) = ϕ+

13(ξ),

α(u0
1 − u1

1 + u2
1 − u3

1) + (1 − α)(σ0
13 − (1 + 1/(6R))σ1

13 + σ2
13) = ϕ−

13(ξ),

α(u0
3 + u1

3 + u2
3) + (1 − α)R(σ0

33 + σ1
33) = ϕ+

33(ξ),
(3.7)

α(u0
3 − u1

3 + u2
3) + (1 − α)R(σ0

33 − σ1
33) = ϕ−

33(ξ)

form a closed system of equations for the six basic functions

u0
1, u1

1, u0
3, σ0

11, σ1
11, σ0

13

and the eight auxiliary functions

u2
1, u3

1, u1
3, u2

3, σ2
13, σ3

11, σ0
33, σ1

33.

We introduce the dimensionless variables

σ̄ij =
σij

σ0
, ε̄ij =

εij

ε0
, ε0 =

σ0

μ
, ūi =

2ui

hε0
,

ξ =
x1

L0
, ζ =

2x3

h
, η =

h

2R
, q̄0

i =
q0
i h

2σ0

(σ0 and L0 are characteristic quantities having the dimensions of stress and length, respectively, and ε0 is the
characteristic strain). Below, the bar above the dimensionless quantities is omitted.

In the dimensionless variables, the approximations of stresses (3.1) and displacements (3.4) are written as

σ′
11 = t11 + m11P1, σ′

13 = t13 + m13P1 + r13P2,

σ′
31 = t31, σ′

33 = t33 + m33P1, (3.8)

u′
1 = u0 + u1P1, u′

3 = v0, u′′
1 = u0 + u1P1 + u2P2 + u3P3, u′′

3 = v0 + v1P1 + v2P2,

where

t11 =
T11

hσ0
, t31 = t13 =

T21

hσ0
, m11 =

6M11

h2σ0
,

u0 =
1

hε0

h/2∫

−h/2

u1

h
dx3, u1 =

6
h2ε0

h/2∫

−h/2

u1

h
x3 dx3, v0 =

1
hε0

h/2∫

−h/2

u3

h
dx3.

In the dimensionless variables, the system of differential equations for the expansion coefficients (3.8) be-
comes

η(t′11 + t13) + (σ+
13 − σ−

13)/2 + q0
1 = 0, η(t′13 + t11) + (σ+

33 − σ−
33)/2 + q0

3 = 0,

ηm′
11 − 3t13 + 3(σ+

13 + σ−
13)/2 + q1

1 = 0,

t11 = α(η(u′
0 + v0) + γv1), t33 = α(γη(u′

0 + v0) + v1), (3.9)

m11 = α(ηu′
1 + 3γ1v2), m33 = α(γηu′

1 + 3v2),

t13 = (η(v′0 − u0) + u1 + u3), m13 = 3(u2 + v1), r12 = 5mu3.
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From Eqs. (3.7), the auxiliary quantities can be expressed in terms of the basic quantities and functions
specified on the layer surface. Substitution of these expressions into Eqs. (3.9) yields a sixth-order system of
differential equations for the basic quantities, whose order does not depend on the boundary conditions on the layer
faces.

Introducing the vector

Z = [u0, u1, v0, t11, m11, t13]t,

we write the first-approximation system of equations of the cylindrical layer as

Z ′ = HZ + F , (3.10)

where H is a 6 × 6 matrix and F is a six-component vector.
For ξ = ξ0 and ξ = ξ1, system (3.10) is subject to boundary conditions of the form

AX + BY = C,

where

X =

∥∥∥∥∥∥
u0

u1

v0

∥∥∥∥∥∥
, Y =

∥∥∥∥∥∥
t11
m11

t12

∥∥∥∥∥∥
,

A and B are specified 3 × 3 matrices and C is a specified three-component vector.
Replacing 1/R in Eqs. (3.7) and (3.9) by η = h/L0, we obtain the equations of an elastic plane layer [7].

The general solutions of the equations of an elastic plane layer for various conditions on the layer faces are given
in [7]. The equations of an elastic plane layer and their general solutions given in [7] were used to solve a number
of contact problems with mixed boundary conditions on the layer faces [10–13].

4. Equations of Laminated Shells. For a shell composed of several elastic layers, one can write the
equations given in Secs. 1–3 for each layer. The resulting system should be supplemented by matching conditions
for the stresses and displacements at the interfaces. These conditions are formulated in terms of the following
truncated Legendre polynomials:

σ̂′
13, σ̂′

23, σ̂′′
33

for the stresses and

u′′
1 , u′′

2 , u′′
3

for the displacements.
The stress–strain state in laminated shells can be determined employing various numerical algorithms. Using

matching conditions for the stresses and displacements at the interfaces between the layers, one can construct a
system of differential equations for a laminated shell. However, this algorithm is ineffective for a large number of
layers in the package. In this case, the problem can be solved through the use of an iterative algorithm [10].

Conclusions. The equations derived in the present paper admit formulation of mixed conditions on the
shell faces, which can be used in solving contact problems with unknown interface between regions with different
boundary conditions. Moreover, these equations take into account finite shear rigidity. The approach described in
the paper can be used to construct shell equations in other curvilinear coordinate systems [14–16]. The algorithm for
constructing the shell equations remains unaltered if the coefficients aijks in (2.10) are functions of the variables α1,
α2, and x3. Therefore, the approach proposed can be used to construct equations for inhomogeneous anisotropic
shells [17] and for nonlinear constitutive relations.
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Foundation “Leading Scientific Schools of Russian Federation” (Grant No. NSh-648.2006.1).
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